欢迎访问洛尚|LAWSON!
洛尚|LAWSON宣传语

关键字:超声波破碎仪、粘度计、金属浴、组织研磨仪

洛尚|LAWSON联系方式

产品中心

Product

超声波细胞粉碎机-液晶版

超声波石墨烯分散机 DH99-IIDN
超声波石墨烯分散机 DH99-IIDN

超声波石墨烯分散机,DH99-IIDN是专门用于石墨烯制备过程。通过对液体的介质施加超声波,发挥超声波所独具的空化效应、机械效应等达到加工的目的,是目前石墨烯制备和应用中的重要环节。

联系购买
在线咨询
  • 产品介绍
  • 单页

超声波石墨烯分散机,DH99-IIDN是专门用于石墨烯制备过程。通过对液体的介质施加超声波,发挥超声波所独具的空化效应、机械效应等达到加工的目的,是目前石墨烯制备和应用中的重要环节。DH99系列超声波产品,是利用超声波的空化作用来分散团聚的颗粒。它是将所需处理的颗粒悬浮液(液态)放入超强声场中,用适当的超声振幅加以处理。由于粉体颗粒团聚的固有特征,对于一些在介质中分散得不好的粉体,可加入适量的分散剂使之保持分散稳定状态,一般可达到几十个纳米,甚至更小.该产品尤其用于分散纳米材料(如碳纳米管、石墨烯、二氧化硅等)有良好效果。

超声波石墨烯分散机

石墨烯是由单层碳原子构成的世界上最薄、最硬的二维材料,其十分良好的强度、柔韧、导电、导热、光学特性,在各大领域都有重要的作用。自然状态下不存在单层石墨烯材料一般以三维的石墨存在,要在石墨中提取单层石墨烯变得非常重要。

超声波石墨烯分散也称超声波石墨烯剥离,使用氧化石墨还原法,配合超声波振动能有效地提高氧化石墨层间距,层间距较大的氧化石墨不仅有利于其他分子、原子等插入层间形成氧化石墨插层复合材料,而且易于被剥离成单层氧化石墨,为进一步制备单层石墨烯打下基础。

超声石墨烯分散原理

超声波石墨烯分散设备是利用超声波的空化作用来分散团聚的颗粒。它是将所需处理的颗粒悬浮液(液态)放入超强声场中,用适当的超声振幅加以处理。在空化效应,高温,高压,微射流,强振动等附加效应下,分子间的距离会不断增加,最终导致分子破碎,形成单分子结构。该产品尤其对于分散纳米材料(如碳纳米管、石墨烯、二氧化硅等)有良好效果。

自然界中存在大量的石墨材料,厚1毫米的石墨大约包含300万层石墨烯。单层石墨被称为石墨烯,在自由状态下不存在该物质,都以多层石墨烯层叠的石墨片的形式存在。由于石墨片的层间作用力较弱,可以通过外力进行层层剥离,从而获得只有一个碳原子厚度的单层石墨烯。

产品特点:

一、聚能式大功率循环超声,超声波效率更高更强

二、可扩展性强,从中试型10L至生产型250L均可选择

三、30mm以上特制高振幅探头带来强劲能效

四、可选配带冷却夹套的处理腔,避免样品过热

五、优质SUS304不锈钢材料具有耐蚀性、耐热性、低温强度和机械性能,无磁性等优点。

六、带有机械搅拌功能可使分散过程无死角分散更均匀。


型号
DH99-IIDN
频率
19.5-20.5KHz
功率
1800W
随机变幅杆
Φ25
可选配变幅杆
Φ20、28
破碎容量
50-1200ml
占空比
1-99%
电源
220/110V 50Hz/60Hz
电源机箱尺寸
400×280×220mm
净重
13.2kg
主机+换能器重量
15.5kg
外包装尺寸
534×295×435mm



超声波发生器一台
振动系统(换能器组件)一只
隔音箱一台
电源线一根
专用扳手(用于拆卸变幅杆)一套
保险丝8A 、5A各2个
使用说明书一份
合格证一张
保修卡一份



石墨烯分散.jpg变幅杆发射头-01.jpg

适用行业:

1、  生物行业:如精油提取,天然色素提取,多糖提取、黄酮提取、生物碱提取、多酚提取、有机酸提取、油脂提取,

2、  实验室应用:细胞粉碎,产品粉碎,物质分散(悬浮液制备)和凝聚,

3、 化工行业:超声波乳化和匀化,超声波凝胶液化,树脂消泡。

4、 超声波生物柴油生产,在各种化工生产中明显加速强化各类化学反应。

5、 水处理行业:污染水质降解

6、 食品和化妆品行业:酒类淳化,化妆品颗粒细腻化,纳米颗粒制取

7、 石墨烯行业:石墨烯分散,石墨烯纳米颗粒制取

※超声波分散设备可用于石墨烯,油墨涂料等分散,均质化处理;石油乳化;中药萃取加工;细胞,压载水破碎,消毒处理;化工原料加速反应等方面。


针对中试及工业定制需求,我司提供专业定制方案,欢迎详询。186 5743 5285 张工


常用的分散方法

1.微机械剥离法

用胶带直接将石墨烯薄片从较大的晶体上剥离下来,不断重复这个过程。

使用一种材料与膨化或引入缺陷的热解石墨进行摩擦,体相石墨的表面会产生絮片状的晶体,絮片状晶体中含有单层石墨烯。

缺点:石墨烯产量低,面积小,难以精确控制尺寸,效率低,不能大规模制备。

2.化学气相沉积法

将一种或多种含碳的气态物质(通常为低碳的有机物气体)通入到真空反应器中,通过高温使含碳的气体分解碳化(通常为低碳的有机物气体),在基底表面生长出一种碳单质的过程。

缺点:石墨烯的六角蜂窝状晶体结构,无法完全石墨化,品质不如微机剥离法的好,高昂的成本及苛刻的设备要求都限制了其规模化制备石墨烯,还需要加入催化剂降低了石墨烯纯度。

3.晶体外延取向生长法

一种是通过加热单晶 6H-SiC 脱除 Si,从而在 SiC 晶体表面外延生长石墨烯。石墨烯和 Si 层接触,这种石墨烯的导电性受到基底影响;另一种是利用金属单晶中的微量碳成分,通过在超高真空下高温退火,金属内碳元素在金属单晶表面析出石墨烯。

缺点:石墨烯薄膜厚度不均匀,难以控制,生成的石墨烯紧紧地黏贴在基底上难以剥离,会影响石墨烯的特性。同时需在超真空及高温条件下生长,条件极为苛刻,设备要求高,无法实现大规模、可控制备石墨烯。

4.氧化石墨还原法

氧化石墨烯一般由石墨经强酸氧化而得。主要有三种制备氧化石墨的方法:Brodie法,Staudenmaier法和Hummers法,其中Hummers法石墨烯分散需加入超声波辅助。

特点:Hummers法石墨烯分散:方法简单,耗时较短,处理量大,安全无污染,是目前最常用的一种。

5.超声辅助法

超声波石墨烯分散系统采用超声波辅助Hummers法制备氧化石墨烯,是以液体为媒介,在液体中加入高频率超声波振动。由于超声是机械波,不被分子吸收,在传播过程中引起分子的振动运动。空化效应下,即高温、高压、微射流、强烈振动等附加效应下分子间的距离因振动增加其平均距离,最终导致分子破碎。能更有效地提高氧化石墨层间距,且随着超声波功率的提高,所得到的氧化石墨的层间距呈扩大趋势。

超声波瞬间释放的压力破坏了石墨烯层与层之间的范德华力,使得石墨烯更加不容易团聚在一起。层间距较大的氧化石墨不仅有利于其他分子、原子等插入层间形成氧化石墨插层复合材料,而且易于被剥离成单层氧化石墨,为进一步制备单层石墨烯打下基础。



    Copyright © 2003~2023 宁波洛尚智能科技有限公司版权所有 | LAWSON(洛尚中国) | 浙ICP备15028117号-2